PHYSICAL REVIEW E

VOLUME 50, NUMBER 4

OCTOBER 1994

Simulations of two-dimensional arrays of beads under external vibrations: Scaling behavior

S. Luding,! H. J. Herrmann,”?> and A. Blumen!

'Theoretische Polymerphysik, Rheinstrasse 12, D-79104 Freiburg, Germany
2Hochstleistungsrechenzentrum, Kernforschungsanlage, Jilich G.m.b.H., D-52425 Jiilich, Germany
3SP.M.M.H., Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, 10 rue Vauquelin,
75231 Paris, Cedex 05, France
(Received 4 March 1994; revised manuscript received 24 May 1994)

We present a series of simulations on systems of beads enclosed in two-dimensional (2D) boxes, and
compare the results of molecular dynamics (MD) and event-driven algorithms. The beads collide inelast-
ically and are submitted to vibrations. We vary over a wide range the parameters: the amplitude and
the frequency of the vibrations, the number of particles, and the inelasticity of the collisions. While the
height of the center of mass of the system scales with respect to the restitution coefficient €, the number
of beads N and the typical velocity of the bottom plate, the functional dependence differs from the
findings in 1D systems. We find that the MD results depend strongly on the time . during which the

particles are in contact.

PACS number(s): 46.10.+z, 05.60.+w, 05.40.+]

I. INTRODUCTION

In recent years a lot of effort has been put into the un-
derstanding of the behavior of granular media. A recent
summary of the situation has been given in Ref. [1].
Computer simulations have acquired a growing role in
the understanding of basic mechanisms; an overview of
presently available methods has been given in Ref. [2].
The fascinating features displayed in effects such as segre-
gation [3-6], heap formation under vibration [7-9], as
well as the formation of density waves [10] or the so-
called “decompaction” in dissipative granulates [11] are
due to the fact that granular media are intermediate be-
tween fluids and solids. Above a certain density a granu-
late is resistant to shear, while below this density the ma-
terial becomes fluid. We note that the behavior of the
fluid state is rather complex, especially when large fluc-
tuations and large density gradients occur.

Fluidization may be readily observed by putting sand
on a loudspeaker or on a vibrating table [7-9,12,13]. A
vibrating medium conveys energy to the sand which is
then dissipated through the collisions among the grains.
The density of the material is, even under strongly dissi-
pative conditions, quite reduced, so that the system can
behave in many ways like a fluid. Thus under certain cir-
cumstances convection cells may appear or heaps may
form spontaneously [7-9]. When particles of different
sizes are put on the vibrating plate the larger ones tend to
rise; this leads to a spatial segregation of the particles ac-
cording to size, the larger particles coming on top.

While over the years several attempts have been made
to formalize the complex rheology of granular media
(here we mention kinetic theories [14,15], cellular auto-
mata methods [16], and random walk approaches [17]),
computer simulations have recently evolved into playing
a fundamental role. Techniques like molecular dynamics
(MD) and also event-driven (ED) simulations seem par-
ticularly promising. These methods parallel other nu-
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merical methods, such as the one introduced by Cundall
to study the motion of rock masses [18]: In all these ap-
proaches the granular material is seen as an assembly of
discrete particles which interact at their points of con-
tact.

Technically, ED simulations are readily visualized:
Here the particles follow an undisturbed Newtonian
motion as long as they are not in contact. On contact the
particles conserve the overall momentum but dissipate
energy, a feature which is taken care of by introducing a
so-called restitution coefficient. ED algorithms were used
in Refs. [19-25]. On the other hand, ED simulations
based on binary collisions are hampered by the fact that
at a certain threshold of energy loss the collision frequen-
cy between the particles diverges and thus clusters will
form. We note that, in situations in which the particles
are very often in contact, the computing time needed for
ED algorithms gets to be very large. In one dimension
(1D) it is possible to circumvent the problem by using the
largest relative velocity (LRV) algorithm [23,24]. Here
we are interested in the regime in which the particle den-
sity is low, so that the collisions are well separated in
time, and we do not run into such problems.

In this work we focus on 2D situations which we ana-
lyze using both MD simulations and ED simulations, the
aim being to find when the results obtained through the
two methods agree. We concentrate on the fluidized re-
gime for which (as we show) the mean height of the
center of mass of the system scales with respect to the
restitution coefficient, to the number of beads, and to the
velocity of the bottom plate. The scaling behavior is,
however, different from what is found in 1D [24].

II. SIMULATION ASPECTS

The elementary units of granular materials are mesos-
copic grains, whose surface is rough on the microscopic
scale. Solid friction is the immediate consequence: When
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two touching grains are at rest with respect to each other
a finite force F; is needed to trigger relative motion (static
friction), while when the grains move against each other a
finite force F, is needed to maintain the motion (dynamic
friction). As a rule F; is less than F; furthermore, both
F; and F; depend only on the normal force and are in-
dependent of the relative velocity and of the area of con-
tact (Coulomb law). Solid friction has the crucial conse-
quence that (distinct from a situation which holds for
molecular systems) on the level of the elementary units,
namely, of the grains, the system does not conserve ener-
gy. A further source of energy dissipation is the plastic
deformation of the grains, which is due to the normal
forces acting during collisions.

In this work we use simple dissipation laws which,
however, capture already many interesting features of
the behavior of granulates. In the simulations we use
N spherical particles, whose diameters are d;
(i=1,...,N). In some cases we pick the d; randomly
from a homogeneous distribution of width w centered at
dy=1 mm. In other cases we take all diameters equal;
thus when we do not mention w explicitly we take it to be
zero. The N particles are placed into a container of
width L that is open at the top; we assume either periodic
boundary conditions or fixed vertical walls.

A. Molecular dynamics method

We use a fifth order predictor-corrector MD scheme,
see Ref. [25]. Let us first turn to the forces we use. Gen-
erally one has three kinds of forces acting on particle i
when it overlaps with j [i.e., when the distance r;; = lr[j
is smaller than the sum of the radii (d; +d;)/2]. One has

first an elastic restoration force

() — i Lj
fo —K[r,-j—i(d,-+dj)]7— , (1
i
where K is the spring constant. Second, one has a dissi-
pation force due to the inelasticity of the collision,

(i) — Tij
faiss= —ymy(vy1;)—, 2)
ri

where v is a phenomenological dissipation coefficient, m;;
is twice the reduced mass of particles i and j,
m;;=2m;m;/(m;+m;), and v;=v,;—v; is the relative
velocity of particles i/ and j. Furthermore, one also has
shear friction, which plays an important role in several
instances (such as arching and heap formation). Here we
neglect shear friction, because we are interested in situa-
tions in which the particles have long times of free flight
and comparably short times of contact.

The collision of a particle with a wall is mimicked by
letting the wall have infinite mass. Furthermore, the
influences of gravitation and of the external vibrations
are readily included: On one hand the gravitation
g=—9.81 m/s? pulls each particle down; on the other
hand the container is subjected to a vibrating motion de-
scribed by
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zo(t)= Asin(2wft) , (3)

where f is the frequency and 4, the amplitude.

B. Event-driven simulations

In event-driven simulations the components of the sys-
tem under analysis (here the beads) evolve independently,
unless an event takes place. An event is here a collision
between two particles or the collision of one particle with
a wall: both situations are characterized by a sudden
change of particles’ momentum. Hence in ED simula-
tions the time in which colliding particles are in contact
is ideally zero. This is quite different from MD simula-
tions, where the duration of a collision (i.e., the time ¢,
the beads are in contact) does not vanish, and in fact
turns out to be quite significant.

In a recent work [24] numerous simulations were car-
ried out for a 1D column of particles. For those simula-
tions a simple event-driven algorithm was used, which
updates the whole system after each event. Because of
the small number of particles involved (N <100), the
procedure works quite well in 1D. The situation changes
in higher dimensions, since then one also has large num-
bers of particles. A way to handle the matter was put
forth in Ref. [22]. The advantage of the ED algorithm
implemented in Ref. [22] is that one does not have to up-
date the state of the system after each event. This is ren-
dered possible through a double-buffering data structure
where the “old” status (i.e., time, position, velocity,
partner) as well as the “new” status (i.e., new time, posi-
tion, velocity, partner) of each particle is recorded. If an
event happens, the “new” status gets to be the “old” one
and the subsequent ‘“‘new” status has to be computed.
This computation is performed only for the particles in-
volved in the collision, because only their velocities
changed. In the computation of the ‘“new” status, the
first step is to find the presumable new colliding partner
and to calculate the “new” event time; the second step is
to compute the positions and velocities after this “new”
event. A “new” status might be preempted several times
due to collisions of the partners with other components
of the system. To make the algorithm more efficient, it is
possible to apply the so-called “delayed update” method;
this means to postpone examining and updating the posi-
tion and the velocity of a particle until its next event; one
can also store the event times in an ordered heap tree
which simplifies finding the next event. For a detailed
description of the algorithm see Ref. [22].

We implemented the algorithm of Ref. [22] with a few
changes. First, since the calculations in [22] computed
close-packed arrangements of spheres in the absence of
external force fields, we included for our purposes the ad-
ditional forces of gravity and of the vibrating bottom
plate. Then we introduced the dissipation through the
restitution coefficient for collisions, as we discuss in the
following. Furthermore, we found it expedient to work
with fixed sphere diameters and dispensed with the idea
of dividing the container into several sectors.

For our simulations, all events which consist in col-
lisions between two particles occur at times which can be
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calculated analytically. The same holds true for col-
lisions of the particles with the lateral walls, whereas the
event times for particle collisions with the moving bot-
tom plate have to be computed numerically . For this we
use as in our 1D ED simulations [23,24] a root-finding
procedure.

In the ED simulations dissipation occurs only on col-
lision; furthermore, we let the dissipation be related to
the normal component of the relative velocity only (this
is the limiting case of perfectly smooth particles). The
restitution coefficient € thus determines the normal rela-
tive velocity after collision in the reference frame of the

center of mass: u”=—ev/"”. Here v and u denote the

1
relative velocities before and after the collision and the
normal component is v,-‘j-"’=nijvij with v;=v;—v; and
n; =1, /r;. For the restitution coefficient €, for col-

lisions of particles with the wall one has in similar fashion

ulm=—e, v\".

C. Initial conditions

In the simulations which we report we considered
several initial conditions. Thus we performed simula-
tions which started from a regular close-packing arrange-
ment at the bottom of the container or we used as initial
configuration particles randomly positioned inside a
space several times higher than the height corresponding
to dense packing. The initial velocities were also varied,
say by setting them to zero or by picking them randomly.
Before recording the values used in the averaging we let
the bottom plate perform from 50 up to 1000 vibration
cycles, in order to ascertain that the system is near its
steady state. The displacements, velocities, and energies
are then determined by averaging over up to 4000 subse-
quent cycles.

The simulations were carried out on a Cray Y-MP and
on IBM RS6000 workstations.

III. COLLISIONS

In recent papers [23,24] a scaling behavior was report-
ed for the position of the center of mass (c.m.) of a 1D
column of beads undergoing external vibrations. In the
following we will show that the corresponding scaling for
2D arrays of beads is different. In Refs. [23,24] an ED al-
gorithm was used. The observation was that in the fluid-
ized regime the height of the center of mass (4, ) obeys

Bom —hemo=[4/38)(4q0)?X ", 4)

c.m.

where h_,_,  is the height of the column at rest and
X=N(1—¢) is an effective dissipation parameter. Here
N denotes the number of particles and € the restitution
coefficient for binary collisions. In 1D N is also the num-
ber of dissipative contacts in the system.

Before utilizing MD methods, we have first to establish
the connection between the parameters K and y used in
MD and the restitution coefficient € used in ED simula-
tions. We consider the collision of two particles in 1D.
The situation is modeled here by a spring and a dashpot,
so that setting x"=f"/m, *f(j)/mj with [
=f0+ @ the following differential equation holds for
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the (positive) penetration depth x =1(d; +d;)—r;:
x"+2yx'+wix =0 . (5)

In Eq. (5) one has w,=1 K /m 4 being the reduced mass
m g =m;m;/(m;+m;). The solution of Eq. (5) is

x(t)=(vy/w)exp(—yt)sin(wt) , (6)
with the corresponding velocity
x'(8)=(vg/w)exp(—yt)[ —y sin(wt)+wcos(wt)] .
(7

In Egs. (6) and (7) v, =x'(0) is the relative velocity before
collision and @=1" w3—y? a damped frequency. The
contact time is given by

=T/ (8)

because the interaction ends when x(¢)<0. The
coefficient of restitution € is defined by e= —x'(¢.)/x'(0)
so that

e=exp(—my/w) . )

From Egs. (6) and (7) the maximal penetration depth
X max also follows; it fulfills the condition x'(¢,,)=0, so

that ot ,, =arctan(w /y )=arcsin(w /w,) and

=(vy/wq)exp[(—y /w)arcsin(w /wy)] . (10)

For the case of low dissipation (i.e., w,>>7v) this leads to
tmax —t. /2 and to

X max =V /@q - (11

The maximal penetration depth x,, is in the case of,
say, steel particles much smaller than the particle diame-
ter. In our model x,, is proportional to v,, see Eq. (11).
In the case of high velocities (which occur for small dissi-
pation and strong agitation) one obtains for fixed o (i.e.,
fixed K) rather large x,, values; this is a problem of the
linear model underlying Eq. (5).

Now K is a function of the Young modulus and the
Poisson ratio, which are material inherent and thus fix ¢,
for a given material. In Ref. [26] the contact time was
evaluated to be 7, ~4.6X 107 ¢ s for the collision of two
steel beads with diameter d =1.5 mm.

At low dissipation t, is proportional to K !/, see Eq.
(8), so that an increase of K by a factor of 100 decreases ¢,
by a factor of 10. Now taking physically reasonable
values for . leads to extremely high MD computing
times. This is due to the fact that one has to ensure that
several time scales of the system are well separated.
Ideally one should have

typ <<t, <<T, (12)

where typ denotes the time between the simulation steps,
t, is the contact time, and T =1/f is the period of the vi-
bration. The MD simulations reported here were done
with typ <t./40. We varied T in the range 0.05 s
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<T<0.0025 s and we used ?, values in the range
2.2X107%s<t, <7X10™*s, by choosing K accordingly.
Here we let ourselves be led by the model character of
Eq. (5).

Another time variable to be aware of is the average
time ¢, between collision events. One may approximate
t., by t.,=1/v, where [ is the mean free path. In 2D [ is
comparable to (h,, —h_ . o)L /(Nd), where the quanti-
ties h., and h_ o, denote, as before, the height of the
center of mass, see Eq. (4), and 7=(v?)!/? is an average
velocity. We now use the quotient

o=t,/t. , (13)

which was introduced in Refs. [26,27]. The value of o is
the ratio between the average time of free flight and the
contact time ¢,. For o >>1 one finds almost exclusively
that only pairs of particles collide. For o <<1 the contact
time ¢, is larger than the average time between collisions.
In other words, during ¢, there is a high probability for a
bead to interact with several others. In this case the use
of the restitution coefficient € to describe the energy dissi-
pation is questionable, € being defined for two-particle
collisions only. In several test runs we found the condi-
tion o >1 to render the MD results independent of ¢,.
For the calculations reported here we checked that o > 2
always holds; in fact, in most cases we even have o > 5.

In our simulations we have as typical parameters
do=10"3m, K/m_ 4=2X10° s72, y=2X10° s}, and
tmp=10"% s. These parameters lead with the above
equations to #,=0.7X10"* s, €=0.87 (i.e., low dissipa-
tion) and hence to x,,, =2.09%X 107> m for v,=1 ms™!
(i.e., Xmax=0.02d,). Experimentally the restitution
coefficient € is found to be only weakly velocity depen-
dent; for velocities around 1 ms™! one finds €=0.6 for
aluminum and €=0.92 for steel [23,24]. We note here
that we are allowed to use the parameters given above
only for systems in which all velocities stay smaller than
1 ms~ L. In systems in which larger velocities occur one
has to decrease the contact time to a reasonable value.
As a basic finding, we note that the MD simulations lead
to the same result for different values of parameters in
Egs. (1) and (2) as long as the related € is the same and,
most important, as long as o >>1. The results from ED
simulations coincide with the MD findings in this ¢,
range; we note that for ED calculations one has implicitly
t,=0.

IV. RESULTS

In the following we will discuss the behavior of N par-
ticles of diameter d; =107 m and restitution coefficient
€. First we let the particles fill a box of width L =13d,,
where in their state of lowest energy they form a triangu-
lar lattice. The height of the center of mass of this ar-
rangement is

nyd — —
hc.m.O: ;NO [(1_‘/3/2)’1},4_‘/3/2"}3]

nod —
+ 0N0[1+\/3nh]. (14)
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Here n, =L /dy—1 is the average number of beads per
layer in the presence of walls (L /d, for periodic bound-
ary conditions). In Eq. (14) n, =entier(N /n,) is the
number of full layers and no=N —n,n, is the number of
beads in the last layer. For N =50, n,=12.5, and
dy=10"> m we find n,=4 and ny=0, which leads to
Bemo=do/2(14+3/2V3)=1.8X10"* m.

Snapshots of the system are plotted in Fig. 1(a) for
different values of the dimensionless acceleration
a= A w?/g of the box (here a=0, 1, 2, 5, and 10). The
collision time used here was ¢, =0.7X 10 *s. In Fig. 1(b)
we plot the corresponding number-density profiles. For
small a values we find that most particles are situated
near the bottom of the box; the packing is dense. For
large a values, the particles have long times of free flight
between collisions. For the simulations in Fig. 1 we cal-
culated o, as given in Eq. (13), and found o =37, 52, 74,
and 120 for a=1, 2, 5, and 10, respectively.

In the following we will analyze the behavior of the
height of the center of mass &, as a function of the pa-
rameters A, f, N, and €, for o > 1. At first using N =50
and €=0.92 we perform simulations in which we vary
both the frequency f and the amplitude A of the vibra-
tions. Results are displayed in Fig. 2. In Fig. 2(a) we plot
h o —h.mo as a function of a for several simulations, in
which 7, varies between 7X 10 % s (K /m .4 =2X10"s 2,
y=118.7 s7!) and 2.2X 1075 s (K /m 4=2X10" 572,
y=3752 s~ !). The amplitude A, varies from 0.1d, to
6d,, and the frequency f varies from 20 s~ ! up to 400 s~ .
The parameter sets for the symbols in Fig. 2(a) are given
in Table I.

To examine the dependence of the results on size
dispersion we perform two series of simulations with fre-
quency f=40 s~' in which we vary A4, so that
0.08< A,/d;<5.9; here L/dy=13 and t,=7X10"*s.
As size distribution parameter we take w =0 (open trian-
gles) and w =0.05 (filled circles). Hence for slight diame-
ter fluctuations we observe no difference in the behavior
of h, ., . For a> 10 these values increase superlinearly.
We connect this to the fact that for the parameters used,
in this a range the maximal penetration x,, gets to be
comparable to the radius of the particles, and thus the
MD simulations no longer reproduce the behavior of me-
tallic particles. To ascertain this statement further we
present simulations (full triangles) obtained for
3.1< A4y/dy<7.0, and w =0, for the same values of f
and L /d,. Contrary to the situation above we use here a
much smaller contact time, £,=7X107° s. In this case
the linear regime extends to higher a values. This result
is reasonable, and is supported by the fact that we find
that the simulation results converge when 7, is decreased;
in the following we will take care that the values of ¢,
used are small enough. To test that the algebraic depen-
dence of h, , —h_ . oona (i.e, on A,) is not due to the
particular frequency used we carried out two series of
simulations in which we set f=100 s~ !; the first uses
t.=7X10"* s and 0.01< A4,/d,<0.32 (diamonds
for «<20), the second one ¢ =7X10"° s and
1.25< Ay /dy <4.34 (diamonds for a = 50). Here we find
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again an algebraic dependence of A,
two orders of magnitude in a.

To find the dependence of h_ ,, —h_ ., o on the frequen-
cy f we performed three series of simulations with slight-
ly varying A, so that 0.50< A4,/d,<0.63 and varying
frequency, 20 s~ ! < f <141 s~!; the contact times are
here 2.2X107° s<t,<2.2X10™* s (open circles). Note
the different slope of these results, which indicates that
the dependence of h,,, —h, o on f? is different from
that on A, [note that f2? is proportional to
a=(4q,0%)/8].

We also performed simulations under periodic bound-
ary conditions, by taking as repeat unit a box of width
L /d,=14. Because of this somewhat larger L value, we
expect the results to change in the order of 10%. Paral-
leling the last simulations (open circles) we varied 4, f,

—h,moOn aover

(a) |

00
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and ¢, by taking 0.50< 4,/d;,<0.55 as well as 60
sT'<f<141 s7', and 2.2X107°<¢t, <7X107 % s. The
values for periodic boundary conditions (filled squares)
display behaviors similar to those found for boxes with
walls in this parameter range; as expected, the value of
Ao m —hemo is somewhat higher.

To look at the behavior of the system at lower ampli-
tudes we performed for periodic boundary conditions
(L/dy=14) an additional set of simulations with
Ay/d,=0.16 and t,=2.2X10"* s, in which we varied f
in the range 40 s ' < f <98 s ! (open squares). Finally
to test the behavior of the system for extremely small am-
plitudes (and high frequencies) we performed a set of
simulations in which we varied A4, such as to have
5X107°< A4,/dy <1074 while keeping fixed f=400
s 1, L=14/d,,and t,=2.2X 10~ * s (crosses).

FIG. 1. (a) Typical snapshots of MD simu-

© o (QCU o lations. We have N =50 particles in a box of
- o f)oo oK o0 width L=13d,. The parameters used are
ol ‘q o000 | €=0.92, t,=0.7X10"* s, f=40 Hz, and a
"0 ~%00.Po - varies between 0 and 10. The snapshots are
=3 a=10 taken in the steady state at phase zero. (b)
Normalized density of particles p as function
. r : . r of the height 4. The parameters are as in (a).
16000 a=0
(b) ol
14000 a=2 b
a=5
12000 a=10
~—
g 10000
A —
< 8000 N
6000 b I ]
4000 | 1
2000 | \ N 1
0 \‘\, I “r’“"«\i,q;,,‘,, S
0 0.01 0.02 0.03 0.04 0.05 0.06

h (m)



50 SIMULATIONS OF TWO-DIMENSIONAL ARRAYS OF BEADS . .. 3105
e T
—~ T ‘9» o o°
-1 -
E 10 ( a ) G o
N - Dbk o pu
< & .
8 2l i 8° -
G 1072 a8 -
< 3 o °° 00&9 + :
o o
| >"p 8%
10_3 E- > o Qo +F 3
g 0® + E
Eoe o ++
+
o 47 ]
104 bl ST Ll
1 10 107
a h / by
T T T T FIG. 3. Logarithmic-linear plot of the normalized number
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8 2 (b) 3 values from Fig. 2. We use f=40s"! with 4,/d,=0.93 such
~ that =6 (squares), Ao/dy,=2.17 such that a= 14 (diamonds),
o107 3 and A,/d,=4.7 such that =30 (circles). These values corre-
g F d—f—* _J spond to the triangles of Fig. 2(a). We also use f =100 s™! with
O 102k ] Aoy/dy=0.5 such that @=20 (triangles) and 4,/d,=1.24 such
< 3 _ that a =50 (crosses). These values correspond to the diamonds
| E _ of Fig. 2(a). The straight line corresponds to exp(—h /h. ).
5 1073 3 i sf E
= E oo
o8 1
1074 b ’_1 —- o — In Fig. 2(b) we replot the results of Fig. 2(a) (except for
10 1 10 the values where x_,,, was found to be too large, see the
A w discussion above). We display in logarithmic scales the
0 dependence of (h_,, —h .. o) on Agw. We observe an

FIG. 2. (a) Log-log plot of A, —h.mo as a function of
a= A,w*/g for N =50 and €=0.92; the parameters correspond-
ing to the symbols are given in Table I. The averages are taken
at phase zero. (b) Plotted are the values of (a) (small circles) and
one series of ED simulations (crosses) as a function of A4yw.
The parameters used in ED are N=50, f=100 s~!, €=0.92,
€,=0.96, and 2<a=<400. The results of (a) scale and the
dashed line has the slope 1.495.

TABLE I. Parameters and symbols used in Fig. 2(a). (p) indi-
cates periodic boundary conditions.

Aop/dp fsh Lidy te (s)
[> 0.08-59 |40 13 7x10
@® [008-59 [40 13 w=0.05 | 7x10*
’ 3.1-7.0 40 13 7x10°5
<> 0.01-0.32 |100 13 7x10*
1.25-4.34 {100 13 7x10°5
O 0.63 20-57 13 2.2x104
0.55 60 - 90 13 7x10°5
0.50 100 - 141 {13 2.2x10°%
. 0.55 60 - 90 14 (p) 7x10°
0.50 100 - 141 | 14 (p) 2.2x10°%
D 0.16 40 - 98 14 (p) 2.2x10*
+ 5x106- 10| 400 14 (p) 2.2x10*

impressive scaling; a linear fit leads to a slope of
1.495+0.009. Within this uncertainty we can hence as-
sert that h,, —h,.o%(A4,0)*%2 Now we plot, as
crosses, the result of a series of ED simulations, where we
use N =50 particles, f =100 s~ !, €=0.92, €, =0.96 and
we vary « in the range 2 <a <400. As is obvious from
the figure the ED simulations lead to the same results as
the MD simulations.

In Fig. 3 we plotted the number-density profiles p(h)
for different a values, 6 <a <50. We scale now the re-
sults by displaying the height 4 in units of 4_,, and the
number density in units of py=1/h_, . For comparison
we also give the exponential function exp(—h/h . ),
represented as a straight line. This exponential form is
the density profile of a Boltzmann gas without dissipa-
tion. From Figs. 2 and 3 we find that in the fluidized re-
gime the height of the center of mass (and thus the poten-
tial energy) scales with the typical velocity Ayw [or ener-
gy (Aow)?/2] of the box and not with the acceleration a.
This situation parallels our finding [24] in the 1D case.
Also the density profiles for different amplitudes and fre-
quencies scale with Ao (.e., h_, ). We attribute to the
dissipative aspect of the collisions the fact that in our
model the density profiles differ from the Boltzmann-gas
behavior.

In the following we will discuss the dependence of
h.n on N and ¢, the parameters which control dissipa-
tion. In Fig. 4(a) we plot .., —h . o as a function of
X=(N/n,)(1—e€). This definition is consistent with the
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FIG. 4. (a) Log-log plot of A ., —h.nmo as a function of
X=(N/n,)(1—¢) in a box of width L =13d,,; the parameters
corresponding to the symbols are shown in Table II. The aver-
ages are taken at phase zero. (b) Plotted are the results of (a)
(small circles) and a series of ED simulations (crosses), scaled by
(Aow)*’?, as a function of X. The parameters used in ED are
a=10and 50, f=100s"}, €=0.96, €, =0.98, and 10 < N <205.
The dashed line has the slope —0.90, the full line the slope — 1.
We find again an impressive coincidence of ED and MD results.

TABLE II. Parameters and symbols used in Fig. 4(a).

N € a FY |t (s)
D 50 0.5-0.9825 (10 |40 7x10°5 - 7x104
’ 50 0.94-0.99 [10 [100 |7x10°
O 50 0.7-0.925 |50 |100 |7x105
O 100 0.2-097 [10 [100 [7x10°
_|._ 100 0.2-0.925 [50 [100 |[7x10°
D 15-250 [0.96 10 |40 7x10° - 7x10*
Q 40-160 |0.98 10 [100 |3x10°
! 175-250 | 0.9 50 |100 |7x10°5-7x10*
’ 100 0.96 100 [ 100 | 7x10°

200 0.98 100 | 100

400 0.99 50 | 100
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1D case, in which n, =1, so that in 1D one has, as before,
X=N(1—e).

In the simulations displayed in Fig. 4(a) we use
L =13d, (no periodic boundary conditions), the other pa-
rameters can be extracted from Table II.

To find the behavior of the system for different € values
we first carry out three series of simulations, in which we
set N=50 and scan € in the range 0.5<€<0.99. Here
we use f =40 s~ ! and a=10 (open triangles), f =100s "'
and @=10 (filled triangles), as well as f=100 s~ ' and
a=50 (circles); t, is taken in the range 7X107°
s<t,<7X107*s. In general we find that h_, —h .,
decreases with increasing X (i.e., with decreasing ¢).

Furthermore, in two more sets of simulations we keep
N =100 fixed and scan € in the range 0.2 <€ <0.97. We
take here t,=7X 107%s, £=100 s~ !, and choose a=10
(results indicated by diamonds) and a=50 (results indi-
cated by crosses). The outcome of this set of simulations
is that for X >2 (i.e., € <0.5) the values no longer follow
an algebraic behavior; in this X range the fluctuations of
A m —hemo are much larger than for X <2. The system
here is close to dense packing and we are thus quite far
from the fluidized regime.

To test the behavior of the system when the number of
particles changes, we vary N in the range 15 <N <250
and use € values in the range 0.9 <€ <0.98; furthermore,
we take £ =40 s~ ! and =10 (open squares), f =100s !
and a=10 (hexagons), as well as f =100 s~ ! and a=50
(filled squares), while ¢, varies in the interval 3X 1073
s<t,<7X10™*s. Here we again find that h_,, —h .,
decreases with increasing X (i.e., with increasing N).

In Fig. 4(b) we plot on the vertical axis
(hem —hemo)/( Agw)*’? as a function of X and the re-
sults scale again. The best linear fit gives the slope
—0.90+0.01; also, as indicated in Fig. 4(b), a value of
—1 is still acceptable. Hence in the sense of simplicity
we have h,, —h_ . ,*<1/X. We tested for several pa-

10—2 1 L 1 " L

C.111.

FIG. 5. Logarithmic-linear plot of the normalized number
density p/p, for N=50, 4,=1.55d,, and f =40 Hz, such that
a=10. Here € equals 0.6 (crosses), 0.8 (triangles), 0.9 (dia-
monds), and 0.95 (squares, connected by dashed lines). These
simulations correspond to the triangles of Fig. 4(a). The
straight line corresponds to exp(—h /h_ . ).
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rameters that the height of the center of mass does not
change much with decreasing ¢,. We carried out a series
of ED simulations, where we used f =100s™!, =10 and
50, €=0.96, and €,=0.98, while we varied N in the
range 10 <N <205. These results are plotted as crosses
in Fig. 4(b); we again find that the ED and MD simula-
tions lead to impressive agreement. We attribute the de-
viations from the X ~! behavior for small X values mainly
to the dissipative collisions with the walls.

In Fig. 5 we plot the density profiles for N =50, f =40
s”!, and @=10, while we vary € between 0.6 and 0.95.
The normalized density profiles tend to an exponential
function when € tends towards unity. In other words, if
the dissipation is low (small X) the density profiles are of
nearly exponential form, whereas for large X values devi-
ations occur: the particles concentrate in a middle posi-
tion, and the system is less spread out.

V. SUMMARY AND CONCLUSION

From a methodological point of view our work shows
that the results of MD and ED simulations agree with
each other in the fluidized regime. A good condition for
this agreement is o >>1. In Refs. [23,24] we have com-
pared ED-simulation results obtained through our algo-
rithm with 1D experiments, and we found a very good
agreement. Our present results show that we can trust
the MD simulations for o >>1 as well. Interestingly, for
o <1, the ED and the MD findings may differ strongly
[26]. Hence it is extremely important to compare the re-
sults to experimental findings, in order to assess the range
of validity of the methods. From the computational
point of view ED simulations are very effective in the
fluidized regime, while MD simulations perform better
when the particle density is high.

On a more technical note, we find both from ED and
MD calculations that the height of the center of mass for
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a 2D assembly of inelastic spheres scales. We obtain
hc.m. —hc.m.O =~C( Aow)S/z[(N/nb (1 —‘6)]_1
=C(A4y0)"*/X , (15)

with C=0.02 s3>”>m~!/2. We recall that scaling was also
found in 1D [24], see Eq. (4); also in Eq. (4) the basic pa-
rameters are Ayw and X. In particular, as already assert-
ed in Ref. [28], h_,, —h.mo does not depend on the ac-
celeration, although the onset of fluidization does [8]. A
difference consists in the fact that here, in 2D, the power
law of Ay is 2, whereas it is 2 in 1D. On the other
hand, the dependence on X is the same in 1D and in 2D.
In 1D the exponent of X was found to be —1 for X <0.1
(for 0.1 <X <2.8 a second order polynomial correction
for the X dependence was applied), while in 2D we find
the exponent of X to be around —1 in the range
0.05<X<2.

Possible extensions of the algorithms used here may in-
clude static and dynamic friction, the rotations of parti-
cles, and variations in the particles’ shapes. Another re-
striction of our algorithms is their 2D aspect; we note
that the extension of our techniques to 3D is now in pro-
gress. In 1D and in 2D we encounter the same funda-
mental problem: one has to be aware of the different time
scales, ¢, t.,, and T, which arise in the system and of the
difficulties which may occur if these time scales are not
well separated.

ACKNOWLEDGMENTS

The support of the Deutsche Forschungsgemeinschaft
(SFB 60), of the Fonds der Chemischen Industrie, and of
the HLRZ-Jilich (grant of Cray computing time) is
gratefully acknowledged.

[1] Disorder and Granular Media, edited by D. Bideau and A.
Hansen (Elsevier, Amsterdam, 1993).

[2] H. J. Herrmann, in Disorder and Granular Media, edited
by D. Bideau and A. Hansen (Elsevier, Amsterdam, 1993),
pp. 305-320.

[3] J. C. Williams, Powder Technol. 15, 245 (1976).

[4] A. Rosato, K. J. Strandburg, F. Prinz, and R. H.
Swendsen, Phys. Rev. Lett. 58, 1038 (1987); Powder Tech-
nol. 49, 59 (1986); P. Devillard, J. Phys. (Paris) 51, 369
(1990); R. Jullien, P. Meakin, and A. Pavlovitch, Phys.
Rev. Lett. 69, 640 (1992).

[5]P. K. Haff and B. T. Werner, Powder Technol. 48, 239
(1986).

[6]J. Duran, J. Rajchenbach, and E. Clément, Phys. Rev.
Lett. 70, 2431 (1993).

[7] M. Faraday, Philos. Trans. R. Soc. London 52, 299 (1831).

[8] P. Evesque and J. Rajchenbach, Phys. Rev. Lett. 62, 44
(1989); C. R. Acad. Sci. Ser. B 307, 1 (1988); 307, 223
(1988); C. Laroche, S. Douady, and S. Fauve, J. Phys.
(Paris) 50, 699 (1989); S. Douady, S. Fauve, and C.
Laroche, Europhys. Lett. 8, 621 (1989); P. Evesque, J.

Phys. (Paris) 51, 697 (1990); J. Rajchenbach, Europhys.
Lett. 16, 149 (1991); E. Clément, J. Duran, and J. Rajchen-
bach, Phys. Rev. Lett. 69, 1189 (1992).

[9]J. Walker, Sci. Am. 247, 167 (1982); F. Dinkelacker, A.
Hiibler, and E. Liischer, Biol. Cybern. 56, 51 (1987).

[10] G. W. Baxter, R. P. Behringer, T. Fagert, and G. A.
Johnson, Phys. Rev. Lett. 62, 2825 (1989); P. C. Johnson
and R. Jackson, J. Fluid Mech. 176, 67 (1987).

[11]J. Duran, T. Mazozi, E. Clément, and J. Rajchenbach,
Phys. Rev. E 50, 3092 (1994).

[12] E. Clément and J. Rajchenbach, Europhys. Lett. 16, 133
(1991).

[13] P. Evesque, E. Szmatula, and J.-P. Denis, Europhys. Lett.
12, 623 (1990); O. Zik and Stavans, ibid. 16, 255 (1991); O.
Zik, J. Stavans, and Y. Rabin, ibid. 17, 315 (1992).

[14] S. B. Savage, Adv. Appl. Mech. 24, 289 (1984); C. S.
Campbell, Annu. Rev. Fluid Mech. 22, 57 (1990).

[15] S. B. Savage, J. Fluid Mech. 92, 53 (1979); G. M. Homsy,
R. Jackson, and J. R. Grace, ibid. 236, 477 (1992); S. B.
Savage and K. Hutter, ibid. 199, 177 (1989); P. K. Haff,
ibid. 134, 401 (1983); J. T. Jenkins and M. W. Richman,



3108 S. LUDING, H. J. HERRMANN, AND A. BLUMEN 50

Arch. Rat. Mech. Anal. 87, 355 (1985).

[16] G. W. Baxter and R. P. Behringer, Phys. Rev. A 42, 1017
(1990); Physica D 51, 465 (1991).

[171H. Caram and D. C. Hong, Phys. Rev. Lett. 67, 828
(1991).

[18] P. A. Cundall, Report No. AD/A-001 602 (U.S. National
Technical Information Service, Springfield, VA, 1974); P.
A. Cundall and O. D. L. Strack, Géotechnique 29, 47
(1979).

[19] S. McNamara and W. R. Young, Phys. Fluids A 4, 496
(1992).

[20] S. McNamara and W. R. Young, Phys. Fluids A 5, 34
(1993).

[21] B. Bernu and R. Mazighi, J. Phys. A 23, 5745 (1990).

[22] B. D. Lubachevsky, J. Comput. Phys. 94, 255 (1991).

[23] E. Clément, S. Luding, A. Blumen, J. Rajchenbach, and J.
Duran, Int. J. Mod. Phys. B 7, 1807 (1993).

[24] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J.
Duran, Phys. Rev. E 49, 1634 (1994).

[25] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Oxford University Press, Oxford, 1987).

[26] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J.
Duran, Phys. Rev. E 50, (to be published).

[27] S. Luding, E. Clément, A. Blumen, J. Rajchenbach, and J.
Duran, Phys. Rev. E 50, 1762 (1994).

[28] J. A. C. Gallas, H. J. Herrmann, and S. Sokolowski, Physi-
ca A 189, 437 (1992); J. A. C. Gallas, H. J. Herrmann, and
S. Sokolowski, Phys. Rev. Lett. 69, 1371 (1992).



